A Novel DHCR7 Mutation in a Smith-Lemli-Opitz Syndrome Infant Presenting with Neonatal Cholestasis

نویسندگان

  • Jae Sung Ko
  • Byung Sam Choi
  • Jeong Kee Seo
  • Jee Yeon Shin
  • Jong Hee Chae
  • Gyeong Hoon Kang
  • Ran Lee
  • Chang-Seok Ki
  • Jong-Won Kim
چکیده

Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive malformation syndrome caused by a defect in cholesterol biosynthesis. The incidence is very low in Asians and only one case has been reported in Korea thus far. Recently, we found an infant with neonatal cholestasis. He had microcephaly, ambiguous genitalia, cleft palate, syndactyly of toes, patent ductus arteriosus and hypertrophic pyloric stenosis. The serum cholesterol was decreased and serum 7-dehydrocholesterol was markedly elevated. Genetic analysis of the DHCR7 gene identified a novel missense mutation (Pro227Ser) as well as a known mutation (Gly303Arg) previously identified in a Japanese patient with SLOS. Although rare in Korea, SLOS should be considered in the differential diagnosis of neonatal cholestasis, especially in patients with multiple congenital anomalies and low serum cholesterol levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a novel DHCR7 mutation in a Korean patient with Smith-Lemli-Opitz syndrome.

Smith-Lemli-Opitz syndrome is a unique malformation syndrome characterized by a defect in cholesterol biosynthesis, which is very rare among populations in Middle and East Asia. The authors identified compound heterozygous mutations ([p.Arg352Trp] + [p.Lys376ArgfsX37]) in a Korean girl with clinical and laboratory features typical of Smith-Lemli-Opitz syndrome. The Lys376ArgfsX37 mutation is a ...

متن کامل

Suspected Smith-Lemli-Opitz-Syndrome: A Very Rare Syndrome

Smith–Lemli–Opitz syndrome (SLOS) is an inborn error of metabolism for cholesterol synthesis. The enzyme defect involved in the syndrome is mutation of 7-Dehydrocholesterol reductase (DHCR7) which leads to increase in plasma concentration of 7and 8-dehydrocholesterol (DHC) levels. The affected patients have different presentation and usually involve all systems of the body. We report a newborn ...

متن کامل

Computational Investigation of the Missense Mutations in DHCR7 Gene Associated with Smith-Lemli-Opitz Syndrome

Smith-Lemli-Opitz syndrome (SLOS) is a cholesterol synthesis disorder characterized by physical, mental, and behavioral symptoms. It is caused by mutations in 7-dehydroxycholesterolreductase gene (DHCR7) encoding DHCR7 protein, which is the rate-limiting enzyme in the cholesterol synthesis pathway. Here we demonstrate that pathogenic mutations in DHCR7 protein are located either within the tran...

متن کامل

7-Dehydrocholesterol-dependent proteolysis of HMG-CoA reductase suppresses sterol biosynthesis in a mouse model of Smith-Lemli-Opitz/RSH syndrome.

Smith-Lemli-Opitz/RSH syndrome (SLOS), a relatively common birth-defect mental-retardation syndrome, is caused by mutations in DHCR7, whose product catalyzes an obligate step in cholesterol biosynthesis, the conversion of 7-dehydrocholesterol to cholesterol. A null mutation in the murine Dhcr7 causes an identical biochemical defect to that seen in SLOS, including markedly reduced tissue cholest...

متن کامل

Maternal apo E genotype is a modifier of the Smith-Lemli-Opitz syndrome.

BACKGROUND Smith-Lemli-Opitz syndrome (MIM 270400) is an autosomal recessive malformation and mental retardation syndrome that ranges in clinical severity from minimal dysmorphism and mild mental retardation to severe congenital anomalies and intrauterine death. Smith-Lemli-Opitz syndrome is caused by mutations in the Delta7 sterol-reductase gene (DHCR7; EC 1.3.1.21), which impair endogenous ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2010